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Outline 
 

• Brief survey of recombination theory 

• LAr – ideal liquid vs real liquid 

• Application of Birks and Box model equations 
o Introduce a modification to the Box model 

• Recombination simulation 
o Focus on angular dependence 

• ArgoNeuT LAr TPC in the NuMI neutrino beam 
o track and calorimetric reconstruction 

• A novel(?) stopping particle ID scheme for selecting 
protons and deuterons 

• Angular dependence – protons 

• Extend to higher stopping power - deuterons 
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- 

No angular dependence 

Electron lifetime 



Y3(X) = recombination factor R  

 fraction of electrons that escape vs E field strength X 

Assumptions 
Recombination ~ charge density 
 
No Coulomb interactions 
 
Ion mobility = electron mobility 
 
Electrons & ions have the same 
Gaussian distribution 

This analysis 
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Birks model (1951) 



Liquid Argon 
A Special Medium 

Box Model 

Ignore electron diffusion and 

ion mobility in LAr 

• High electron mobility 

• Electron MFP = 20 nm 

• Onsager radius = 130 
nm (ECoulomb = Ethermal) 

• No vibration levels 
available  ~1 nsec 
thermalization time 

• Electrons in Coulomb 
field or strong external 
field, E, are not in 
thermal equilibrium  
diffusion equations 
not fully applicable 

 

Thomas & Imel, Phys Rev A 36 (1987) 614 

 = 1 in the canonical model. 
We allow it to vary in the 
recombination fits 
 
We set x = b (dE/dx) and fit b in the 
recombination fits 
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E  = E field 



Liquid Argon 
As a Real Detector Medium 

 1 

Amoruso, et al NIM A 523 (2004) 275 d-rays 

Impurities 

Ions can attach to water molecules, 
screening the Coulomb field. 
Debye length lD= distance at which 
screened potential E = Ethermal 

lD=  400 – 600 nm in ArgoNeut data 
Not negligible? 

Measurement 
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Measurement 

Theory R  0 as E  0 
Heavy ions: R = 0.003 
Electrons: R = 0.35  

Doke, et al Chem. Phys. Lett 115 (1985) 3434 

Birks form 



Application of Birks and Box 
forms to reconstruction 

Inverse Birks equation is   
< 0 at large dQ/dx 

Inverse Box equation is 
well behaved 

But Box model fails to 
match data at low dE/dx 
 
Solution: Let  < 1 
“Modified Box Model” 
ala ICARUS AB = 0.8 
 

Example with  = 0.93    
b = 0.32 

 

  = 1 
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  = 0.93 



Recombination Simulation 
 

Stopping proton: dE/dx = 
24 MeV/cm  rk = 10 nm  
 
MIP: dE/dx = 1.7 MeV/cm 
 rk = 50 nm  

Initial conditions:  
ro = 0.5 nm, Eko = 5 eV  
 
After thermalization:  
<ro> ~ 2500 nm, <Eko> ~ 0.01 eV 
 
Simulation includes motion due to 
(periodic) Coulomb field, external E 
field and atomic collisions, escape 
and recombination criteria 

Jaskolski, Wojcik J. Phys. Chem. A 115 (2011) 4317 

Sim with d-rays 
ICARUS  

E field 
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Recombination Simulation 
Angular Dependence 

Modify simulation to allow non-
perpendicular E  field 
 
Simulation runs for rk = 10, 20, 
30, 40, 50 nm and f = 40o, 50o, 
60o, 80o  
 
Ratios of escape probability, R. 

vs dE/dx  
 
Simulation (data points) 
R ICARUS with E E sin f (curves) 
 
Significant angular dependence 
expected from theory and 
simulation 
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M. Wojcik 



ArgoNeuT 
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481 V/cm 

C. Anderson, 2012 JINST 7 P10019 



Stopping Particle 
Stopping Power 

Bethe-Bloch eqn has power 
law dependence with 
residual range (R) near the 
stopping point 

Note the weak dependence on b 
Trange (MeV), R (cm) 
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1) Reconstruct 3D tracks = cluster 
of 3D space points each with a 
measurement of charge Q 
deposited using the area of a 
Gaussian fit (collection plane) 

2) Find dQ/dx using angle 
corrected distance between 
space points 

3) Correct for electron lifetime 
4) Find (dE/dx)calo using Birks or 

Box equation 
5) Sum up to find kinetic energy 

deposited = Tcalo 

6) Find Trange using track length 
assuming a proton hypothesis 

7) Eliminate lightly ionizing ptcls 
by requiring Tcalo > 0.5 Trange 

Collection 

Induction 

Time 

    ADC 

Select Highly Ionizing Particles 

 

Wire  

ti
m

e 
ti

m
e 

ANT 2013 Baller 13 



Particle Identification 
with minimal bias 

Algorithm 
 
Set b = constant = 0.42 
 
Find Ai = (dE/dx)calo x R0.42 for 
each space point i on a track 
 
Define PIDA = < Ai > = average 
value for the track 
 
Histogram PIDA and look for 
bumps  

Requirements 
Protons: 14 < PIDA < 21 
Deuterons: 25 < PIDA < 33 
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30x more protons 
than expected 
from NC n 
interactions  
neutrons 

ArgoNeut 
data 
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2900 proton candidates 
170 deuteron candidates 
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(dE/dx)deuteron = 25 R-0.43 

(dE/dx)proton = 17 R-0.42 

ArgoNeut data ArgoNeut data 



40o 50o 60o 80o 

f (degrees) 

Protons 
50 MeV < Trange < 250 MeV 
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ArgoNeut data 
Proton candidates 
50 MeV < Trange < 250 MeV 



Angular Dependence 
Protons 

No recombination model 
assumptions required to 
make this plot 
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ArgoNeut data 

(dE/dx)hyp from Bethe-Bloch using R 
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Angular Dependence 
Protons 

Significantly weaker than 
expected from theory and 
simulation 
 
Debye-like screening effect? 
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ArgoNeut data 



Recombination Fits 
 

Birks 

Modified Box 

Birks 

Modified Box 

Vertical bars include 2% 
systematic error 
Horizontal bars dR = 1 mm 
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Data – open circles 
Birks fit – red curve 
Modified Box fit – blue curve 

ArgoNeut data 

ArgoNeut data 



Fit Summary 
Protons 
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 ~ independent of angle 
<> = 0.93 ± 0.02 

Excellent agreement with 
ICARUS in the 80o bin 

b
 (

M
ev

/c
m

)-1
 

Trend line 



Deuterons 
 

f = 80o 

Extends the range of the 
recombination fit to 35 MeV/cm 
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Deuteron: (dE/dx)hyp = 25 R-0.43 

ArgoNeut data 



Summary 
 

• Introduced a modified Box model  
o Excellent agreement with data and Birks model 

o Obviates the poor behavior of the Birks model at low ionization 

• Significant recombination angular dependence 
expected from columnar theory and simulation 
o ~25% loss of charge collected at f ~ 40

o
 and dE/dx ~ 24 MeV/cm 

compared to the same track at f ~ 80
o
 

• Introduced a PID scheme using the power-law 
behavior of stopping particle stopping power 

• Charge loss is 5% - 10% in the proton sample at high 
dE/dx and small angle 

• Extend the range of validity to 35 MeV/cm using a 
small sample of deuterons 
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Backup Slides 



Deuterons or Protons? 
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Lower PIDA range: 23 < PIDA < 27 
Contaminated by protons in the Gaussian tail 

See slide 14 

Deuteron: (dE/dx)hyp = 25 R-0.43 
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Are the deuteron candidates  really 
protons? 

Use the (incorrect) proton hypothesis with 
the deuteron sample 



Estimating the Stopping 
Point Position 

• The stopping point is usually assumed to be dx/2, where 
dx is the distance between the last two space points 

• Use the pattern of dE/dx in the last 5 space points to 
estimate the stopping point in the last wire cell 

• Step a distance dR in the last cell (1 < dR < 10 mm) in 1 
mm increments 

• For each step, calculate  
o dQ/dR for the stopping point, 

o Recombination correction  (dE/dR)calo for the stopping point, 

o (dE/dx)hyp for next 4 points using residual range = dR + n dx ( n = 1,2,3,4) 

• Find rms difference between (dE/dx)hyp and (dE/dx)calo 

for all points 

• Use the D value with the smallest rms 
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Estimating the Stopping 
Point Position 
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Assume the track stops 
halfway in the last cell 

Data 
Monte Carlo 

Data 
Monte Carlo 

After fitting to the stopping 
point 

<dE/dx> ~ 45 ± 45 MeV/cm <dE/dx> ~ 25 ± 13 MeV/cm 



Estimating the Stopping 
Point Position 

• Stopping point error from Monte Carlo ~ 1 mm 

• (dE/dx)calo from the last point is not included in the 

recombination fits 

• Stopping point fit reduces the (dE/dx)hyp error 

propagated from the equation on slide 12 
o Horizontal error bars on slide 18 
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